European Ocean Biodiversity Information System

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [322852]
Trace metal speciation in North Sea coastal waters
Gaulier, C.; Zhou, C.; Guo, W.; Bratkic, A.; Superville, P.-J.; Billon, G.; Baeyens, W.; Gao, Y. (2019). Trace metal speciation in North Sea coastal waters. Sci. Total Environ. 692: 701-712. https://dx.doi.org/10.1016/j.scitotenv.2019.07.314
In: Science of the Total Environment. Elsevier: Amsterdam. ISSN 0048-9697; e-ISSN 1879-1026
Peer reviewed article  

Available in  Authors 
    Vlaams Instituut voor de Zee: Non-open access 343985 [ request ]

Keyword
    Marine/Coastal
Author keywords
    Diffusive gradients in thin-films; Trace metals; Lability; Coastalenvironment; Belgian coastal zone

Authors  Top 
  • Gaulier, C.
  • Zhou, C.
  • Guo, W.
  • Bratkic, A.
  • Superville, P.-J.
  • Billon, G.
  • Baeyens, W.
  • Gao, Y.

Abstract
    Most trace metals exhibit a dual role in marine waters, acting as nutrients at low concentration and being toxic at high concentration. But besides concentration range, speciation is also an important factor. They both show both seasonal and spatial variations. A thorough comparison between total dissolved and particulate concentrations estimated from manual sampling and an assessment of the bioavailability using Diffusive Gradients in Thin Films (DGT) has been performed in this work for Cd, Co, Cu, Ni and Pb, at several sampling points of the Belgian Coastal Zone (BCZ). Additional information to trace back the origin and identify the anthropogenic fingerprint of Suspended Particulate Matter (SPM) was measured using stable carbon isotope measurements in particulate organic matter. Our results show that: (i) particulate and total dissolved metal concentrations are higher at two stations, one in the harbor of Oostende and one offshore; (ii) dissolved and particulate trace metal concentrations do not correlate with the dissolved labile fractions; and (iii) SPM in the harbor zone is likely from allochthonous sources, while in the offshore station marine origin has been evidenced. Our results indicate that, even though contamination is higher in the harbor zones, the trace metal toxicity, which is linked to the metal bioavailability, is most likely not higher than in the open sea. However, with increasing acidification of the ocean, a shift from particulate to dissolved phase might lead to increasing adverse effects on the coastal environment.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors